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The nonperturbative Hartree approximation is applied to the study of the relaxational dynamics
of the two-dimensional random sine-Gordon model. This model describes crystalline surfaces upon
disordered’ substrates, two-dimensional vortex arrays in disordered type II superconducting films,
the vortex-free random-field XY model, and other physical systems. We find that the fluctuation-
dissipation (FDT) theorem is violated below the critical temperature 7. for large enough times
t > t*, where t* is the “barrier-crossing” time which diverges with the size of the system. Above
T. the dynamics obeys FDT for all times and the local autocorrelation function g(t) diverges as
~ T'Int. The transition is second order for g < gi;r where g is the effective coupling to the random-
phase periodic potential. In this regime below T¢, as t — t*, ¢(t) approaches a finite value ¢*(T")
[but diverges as (T. — T)™" as T — T, ]. For g > gi. the transition is first order and occurs at the
higher g-dependent temperature Tc(g). As t — t*, the autocorrelations saturate below T.(g) to a
value ¢* (g, T') that remains finite as T — T (g). In both regimes we find that the ergodic saturation
of ¢(t) to its “one valley” value has the form ¢(t) = ¢* —ct™ (ast — t*~). For t > t* the dynamics
is nonergodic. Marginally stable solutions are found within the quasi-FDT approach. They are
characterized by a FDT breaking parameter m(T') = nT (1 — e tmT) <, m(T)=1for T > T,
where FDT holds]. The static correlations behave as T In |Z]| for |Z] < ¢ with £ ~ exp[A/(T. — T)].
For scales |Z| > £ they behave as (T'/m)In|Z|. Near T¢, T'/m ~ T, but it increases from this value as
T is lowered below T.. The results are compared with dynamic renormalization-group predictions,
with equilibrium results obtained by a similar variational approximation with a one-step replica
symmetry breaking, and with recent Monte Carlo simulations.
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I. INTRODUCTION

The two-dimensional random-phase sine-Gordon
model (RSGM) is currently attracting much attention
[1-15]. This intensified activity is due to two main rea-
sons. First, it does describe important physical systems
such as vortex-line systems with random pinning [5], the
surface of a crystal with a disordered substrate [6], the
random-field vortex-free XY model, and others. Second,
the advances made in investigations of this model have
far-reaching consequences to the understanding of glassy
random systems in general. For example, the equilibrium
behavior was studied with considerable success by differ-
ent methods: the renormalization group (RG) [1-4] (both
in real and momentum space), Gaussian variational (GV)
[7,8] approach which yields replica-symmetry breaking
(RSB), n — 0 Bethe ansatz [9,10], and more recently,
a replica-free variational approach [11]. All of these ap-
proaches agree on the existence of a phase transition into
a low-temperature glassy phase but they differ substan-
tially on the very nature of this phase.

The main “fault line” is between the first two ap-
proaches where the renormalized perturbative expansion
is replica symmetric, contrary to the inherently non-
perturbative variational approach. It is not the first time
for such a discrepancy to occur in theoretical models.
But in the context of random systems it is the best and
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most studied example. An attempt to reconcile these
approaches shows that RSB is a relevant perturbation in
the RG calculations [12], along the line of fixed points as-
sociated with the glassy phase. The RSB perturbation,
however, had to be put in explicitly (and their presence
must be traced to nonperturbative effects).

The phase transition was not observed in numerical
simulations of the weak-coupling RSGM [13]. Our Monte
Carlo (MC) simulations of the surface with disordered
substrate [14] did exhibit the transition at the expected
temperature. The correlations were found to be in accord
with the GV theory. An understanding of a glassy phase
requires also the elucidation of the dynamics of the sys-
tem and its near-equilibrium dynamics in the first place
(namely, its relaxation to equilibrium). In view of the
equilibrium results [13,14] it is clearly necessary to study
the dynamics of the system both by perturbative RG
and by a nonperturbative Hartree approximation. The
dynamic RG analysis to the lowest nontrivial order was
recently completed [6]. The goal of the present work is
the detailed investigation of the nonequilibrium dynam-
ics using the Hartree approximation (a brief account of
the results in the regime with a continuous transition was
given elsewhere [15]). In doing so we follow the footsteps
of Horner and collaborators [16-18]. They have shown
how the approach of Sompolinsky and Zippelius [19] to
spin glasses can be extended to other nonergodic sys-
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tems which violate the fluctuation-dissipation theorem
(FDT). In particular, the concept of quasi-FDT (QFDT)
introduced by Horner to study neural networks [16] and
applied by Crisanti, Horner, and Sommers to the spheri-
cal p-spin interacting spin-glass model [17] was found to
be a cornerstone for these investigations. Simply stated
it says that the breaking of FDT is the minimal one re-
quired to have a (marginally) stable solution for the equa-
tions of motion. In this article we apply this principle to
the RSGM following its implementation to systems with
short-range interactions (e.g., Kinzelbach and Horner for
the dynamics of manifolds in disordered media [18]).

Before reviewing the existing results on the RSGM dy-
namics we shortly revisit the main equilibrium results.
The surface terminology will be used throughout this
work.

The main quantity of interest is the height-height cor-
relations. Both the RG and the GV agree on the value of
T., the temperature at which the transition takes place.
They also agree on the behavior for T' > T, where the
periodic random potential is irrelevant and the behavior
is that of a Gaussian (“free”) theory with height-height
correlations given by

(@ - #) = ([n(@) - h(@))) = glnw- #F (11

(assuming the surface stiffness is normalized to one). In
these units T, = 1/7 and the main disagreement is in
the behavior below T,. Defining ¢ = (1 — T/T.), the RG
predicts for the correlations

2
C@E-&)=AT)|& - &|+ I |§— & (1.2)
T

Since the second term dominates at large separations,
this behavior has been dubbed (by Toner and DiVincenzo
in their study of surfaces in the presence of bulk disorder
[4]) as super-rough.

The GV on the other hand predicts a behavior which
is logarithmic for T' < T, as well: S(T')In|Z — &'| with a
different T dependence of the coefficient S(T). Just be-
low T, this coefficient is predicted to stick to its value at
T.: S(T.) = 1/n%. In one work [8] this behavior is pre-
dicted to hold in the whole regime 0 < T < T.. Taking
into account the finite lattice spacing, another work [7]
finds that S(T') increases from this value when T reaches
lower temperatures. This increase is more pronounced
the larger the coupling is. The replica-free variational ap-
proach [11] yields, under certain conditions, S(7') which
decreases with T'.

For the dynamical behavior the only analytic predic-
tions are from heuristic arguments [20,21] and from dy-
namic RG calculations [6]. The RG predicts for the high-
temperature phase a dynamic exponent z = 2 and a
finite mobility (defined as the ratio between the aver-
age velocity (v) and the applied force F in the FF — 0
limit). As T approaches T, from above the mobility van-
ishes as |T — T,|78. Below T, the dynamics is anoma-
lous: The dynamic exponent increases continuously as
z = 2(1 + 1.78¢) (to first order in €). The response be-
comes nonlinear and (v) ~ F?/2 for small F. The re-
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sults of two works [13,22], in which simulations in the
presence of a small F' were performed, are in qualita-
tive agreement with these predictions. The simulations
of the moving surface with substrate disorder by one of
us [22] yield a good quantitative agreement as well. The
weak-coupling RSGM yields for the anomalous part of
the response exponent a linear behavior with € but the
coefficient is about one-tenth of the dynamic RG predic-
tion (1.78).

As explained in Sec. II the Hartree approximation be-
gins from the same Martin-Siggia-Rose functional used
in the dynamic RG calculations. The self-consistent ap-
proach is briefly reviewed and equations of motion for the
response and correlation functions are given. The stabil-
ity of the FDT solutions of these equations is analyzed
in Sec. III and the full phase diagram is derived. In Sec.
IV the dynamics for T < T, is investigated first in the
early-time ergodic regime and then the late-time noner-
godic behavior is explored. From these results we obtain
in Sec. V the equal-time equilibrium behavior. In the
last section, VI, we summarize the results of this paper
and compare them with the ones obtained earlier in the
above cited papers.

II. STOCHASTIC DYNAMICS OF THE RSGM:
THE HARTREE APPROXIMATION

A. General formalism

We begin with the Hamiltonian of the random sine-
Gordon model (RSGM) in 2 + 1 dimensions which corre-
sponds to the continuum version of the random discrete
Gaussian model in the vicinity of a roughening transition

[23]:

H= /df{g [VA(Z,1)]* — gcos{v [h(Z,t) — d(f)]}} :
(2.1)

The coefficient & is the stiffness, g is the coupling con-
stant, v determines the periodicity (we choose v = 27 /a,
a is a lattice spacing), and d(&) is a random variable
such that vd(&) is a random phase uniformly distributed
in the interval (0, 27]. Random phases for different & are
uncorrelated (short-distance correlations will not affect
the conclusions). The variable h(Z,t) denotes the height
of the surface (or the vortex-line displacement from a
periodic lattice).

The dynamics which describes the relaxation of the
surface fluctuations in the presence of a stochastic noise
is assumed to be governed by the Langevin equation for

the field h(Z,t):

1 0h(E,t)

SHIR|
T, Ot =8

Sh(Z,t)

(2.2)

The constant TI'g is a kinetic coefficient which sets the
time scale of the microscopic dynamics and 8 = 1/T.
The random field ( (&, t) has statistics of a Gaussian white
noise with variance
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(€@ 0@ ) = o @ - —1),  (23)

which ensures the detailed balance, and also that the
fluctuation-dissipation theorem is obeyed locally. The
noise represents the thermal fluctuations in the system.
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The next step is to obtain in a standard way the
Martin-Siggia-Rose (MSR) [24] generating functional
which may directly be averaged over the noise ¢ and the
quenched disorder d(&). By the standard techniques, we
arrive at the MSR generating functional [h(Z,t) is the
auxiliary field]:

Zae = / thﬁexp{— / / didt(ih(, 1) (9, — TorV?) h(Z,1)

+BToygih (&, £) sinfy [h(&, t) — d(:i‘)]})} exp { / / dZdt ToC (3, t)ih(Z, t)},

which still depends on the noise { and the randomness d.

(2.4)

The average over noise can be performed using the cumulant expansion:

<exp { / dFdt Tol (7, 6)ih(Z, t)}>< — exp { / dFdtTo [iﬁ(i,t)]z} .

(2.5)

For simplicity, the Gaussian statistics is also chosen for the random variable exp{iyd(&)}:

(eVdE) g=ivd(E)) ) = a25(F — 7).

(2.6)

Expanding the disorder-dependent factor in Eq. (2.4), averaging all terms, and reexponentiating them again, we obtain

Z = [ DhDhexp (—S) with [25]

S = / / dEdt{-T2[h(&, 8)]? + ih(Z, ) (8. — TorBV?) h(Z,1)}

—%ﬂzf‘gyzf / / / dZdtdt’ ih(@,8)ih(3, ) cos{y [h(Z,t) — h(Z,t)]}.

Note that in Eq. (2.7) we have dropped the contribu-
tions from the higher-order harmonics since the essential
physical properties are dominated by the first harmonics
(higher harmonics are irrelevant in the renormalization-
group sense near the transition [23]).

In dynamic calculations, the quantities of interest are
correlation functions

G- & ,t—t") = (h(Z,)h(F, 1)), (2.8)

and response functions [assuming a time-dependent field
acting on h(Z,t)]

R(& — &t —t') = (h(&,t)ih(Z, 1)), t—t' >0,

(2.9)

which are calculated from the action (2.7) in the standard
way. Causality implies that R(Z — &',t — t') = 0 for
t —t' < 0. In addition, the correlation function (2.8) is
symmetric in time: G(Z — &',t —t') = G(& — &', t' — t).
If we presume that the fluctuation-dissipation theorem
holds then G and R are related by

o . . . o
EZG(z,t) = R(Z,t) — R(&, —t). (2.10)

In practice, it is more convenient to work with the
Fourier transforms with respect to the spatial variable &.

(2.7)

The Fourier transforms of G(Z,t) and R(&,t) are defined
as

G(3,t) :/%G(E,t)e“i’;'i, (2.11)
R(Z,t) = / %R(E,t)f“, (2.12)

and they will be used extensively in the coming discus-
sions.

B. Equations of motion
in the self-consistent approximation

All correlation and response functions can be calcu-
lated from the noise and disorder averaged action (2.7).
In what follows, we treat S in a self-consistent Hartree-
type approximation. This means that all terms which
contain more than two fields k or h are written in all
possible ways as products of pairs of h and h, and that
all such pairs but one are replaced by their expectation
values. The action is then by construction quadratic in
h and h with coefficients which are functions of response
and correlation functions only. To carry out this program
we apply the field theoretical generalization of the Wick
theorem formula:
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(B(&,t)A(h, h)) = / 7 dt’

where ¢(Z,t)

{<¢<f, t)h(f',t')><

i)+ O G ) |

= h(Z,t) or h(&,t), and A is any functional of h and k. Using Eq. (2.13), and after some straightforward
algebra, we replace the sine-Gordon term in Eq. (2.7) with

/ / / dZ dtdt’ ih(&,t) ih(Z,t') cos{y [h(E,t) — h(E,1')]}

_,//dfdt{iﬁ(f,t)h(f,t’) [—

(2.13)

29 [ e (@, )5h(2, ) confy (E,0) — Kz )]

+ [ at(ih@, 0ih(@, ¢) (cos{y [A(E, 1) — B OID

Introducing the response, r(£ — &',t — t'), and correlation, ¢(Z —

r(@— 2 t—t') = R(Z —

q(&—Z',t —t') = G(0,0) —

= (h(Z,1)h(Z, 1)) — (h(Z,)h(T, 1)),

we arrive at the effective action, which reads

F,t—t)
= (h(&, t)ih(Z

S = / / dzdt { ~T3ih(@ O] + ih(Z,1)[6. — TonBV? + w(O)]h(@,1)}

+27H(E OR(E, ) (E O (E, ) cosly [BE,1) — (O |- (2.14)
Z',t — t'), functions defined by
t')), t>t, (2.15)
GEE-a,t-t)
(2.16)
(2.17)

///dmdtdt %w(t —t) zh(w t) zh(:c Y+ A(t—t )zh(:c t)h(Z, ¢ )}

where we have defined ([p = 1,7 = 2)

wlt) = 7T g*(cos{2n [(&,1) — h(, 1))
= ———29;2 Cemamta), (2.18)
A(t) = 4miw(t)r(t). (2.19)

Although the original theory described by Eq. (2.7)
does not have a mass term, the self-consistent approxi-
mation (2.14) generates the term p(0) defined by an in-
tegral

oo
u(t) = / at' A(t'), (2.20)
t

which might be interpreted as a “mass” term. The contri-
butions generated by this term will significantly affect the
dynamic and static properties of the system. The func-
tions p, w, and A depend on t only through ¢(t) = ¢(0,t)
and r(t) = r(0,t).

Using the standard techniques [18] we now derive the
equations of motion for r and q from the action (2.17).
In momentum space they read

(8 + Brk? + pu(0)] r(k,t) — /t dt'A(t — t')r(k,t') = 0,

(2.21)
with the initial condition
r(k,0t) =1, r(kt)=0 fort<Oo, (2.22)
and
t
[8: + Brek? + u(0))g(F, ) — / At — t')q(R,t)
4]
=1 [I(E,t) - I(k,0)], (2.23)
with
q(k,0) = 0. (2.24)

I (E, t) is a shorthand notation for the integral

I(k,t) = /Ow dt'[w(t + t')r(k,t') — A(t + t')q(k, t')].

(2.25)
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III. STABILITY ANALYSIS
AND PHASE DIAGRAM

The coupled equations of motion (2.21) and (2.23) de-
rived in the self-consistent Hartree-type approximation
uniquely determine the time evolution of the correlation
and response functions of the system. The additional re-
lation between g and r comes from the FDT (2.10) which
now reads

duq(k,t) = r(k,t), (3.1)
and which implies the corresponding relation between w
and A:

Bw(t) = —A(2). (3.2)
If FDT holds, I(E,t) - I(E, 0) = 0 and equations for r
and ¢ become equivalent, as they should.

For the dynamics at high temperatures, the FDT given
by Eq. (3.1) is expected to hold for all times. At low tem-
peratures, however, the ergodicity might be broken with
important consequences on the behavior of the correla-
tion and response functions. The nonergodicity is related
to the possibility of the existence of a phase with glassy
properties and it would be manifested only at large times
compared to some time scale t* determined by the sys-
tem size. Therefore we first investigate the solutions of
Egs. (2.21) and (2.23) in the limit ¢ —+ co assuming that
the FDT in the form (3.1) holds for all times.

It is convenient to start from Eq. (2.23), which together
with Eq. (3.1) yields

'r(IZ, t)+ [ﬁnkz + /L(t)] q(E, t)

+/t dt’ [w(t —t') — w(t)]r(k,t') = 1. (3.3)

T(E, t) is positive and vanishes as ¢ — oo. In addition it
implies that d;w(t) < 0. The contribution of the integral
is positive and negligible as t — oco. Hence the following
inequality holds:

[Brk? + u(®)]g(R,t) < 1. (3.4)
After integration over the first Brillouin zone in k space,
|kz|,|ky| € [w/L,7/a], the condition (3.4) may be written
as

%+ u(t)/B ] , (3.5)

(w/L)? + u(t)/B

where without loss of generality we set a =1and Kk =1
(their values will be restored).

Note that from the FDT relation and Eq. (2.20) it also
follows that

q(t) < %m[

() = w(t) — wo,

where wo = w(t = o0) is defined by Eq. (2.18) with the
stationary value of g(t), q(t) = go = (T/4w)In(L?) as
t — oo.

Introducing a new function Ar(q,T) defined by

(3.6)

1557
72 [1—(1/L%)e* /T 242
A [ ema/T -1 T ° qJ
2mw2g2% [ 1 =T
the condition (3.5) reads
Ar(g,t) >0 for all q. (3.8)

Equation (3.8) is the stability condition derived from
the equations of motion under the assumption that the
FDT holds. Therefore all solutions of Egs. (2.21) and
(2.23) for ¢ and r, related by Eq. (3.1), should satisfy
Eq. (3.8). The failure of (3.8) would mean that FDT
solutions are not applicable for the description of a dy-
namically stable system.

For simplicity, we will analyze the condition (3.8) in
the limit L — oo. It turns out that the analysis is par-
ticularly simple if we introduce a new variable z,

z=e 4T ¢ 0,1], (3.9)

in terms of which Eq. (3.8) becomes

A(qa T) = AL-—)oo(qa T)
2n2g? 2 T T — -

=13 |3 7 T=142 T] > 0. (3.10)
Since g diverges in the ¢ — oo limit, this inequality should
be studied in the z — 0 limit. The prefactor z/(1 — z) is
always positive. To understand the behavior of the terms
in brackets, we consider the cases 7T < 1 and 7T > 1
separately.

If #T < 1, the dominant term z™7 ~! diverges at z — 0.
Since this term is negative, the condition A > 0 is always
broken (or the theory is unstable) independently of g.

If #T > 1, all terms in Eq. (3.10) are important. Since
z€[0,1], 1> 2™"7~1 > 2T and A may change its sign if
T/(2¢9%) < 1. If T/(2g%) > 1, A is always positive, which
means that the theory is stable. There is the regime of g,
therefore, where FDT solutions become unstable even for
T > 1/7. From 2¢g% > T > 1/7 it follows that a minimal
g for which this might happen satisfies

1
92—

Ve

To summarize, a simple analysis shows that for T' <
1/7 the condition (3.10) is always violated regardless of g,
while for T > 1 /7 the condition may be either violated or
fulfilled depending on the value of g. To proceed further,
it is illustrative to plot the function Ap(q,T) for g which
is larger and smaller than the characteristic value 1//2.

Figure 1 shows the behavior of AL(q,T) for several
temperatures in the vicinity of the critical temperature
T. = 1/7, and g = 0.3 =~ (3/4)(1/v27), L = 10%. In-
creasing the system size L, the general nature of the
curves is not affected. For the largest possible ¢, ¢ = qo,
Ar(g,T) vanishes for all T. Decreasing T below 1/,
Az (q,T) becomes negative (unstable) at some values of
g, which continuously approaches gqo as T — 1/7 from

(3.11)
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30
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0.00 0.05 0.10 0.15

FIG. 1. Plot of Ap(q,T) versus q for different temperatures
T =T.(1+¢€), and g < g¢r. For T larger than T, (or for € > 0),
Ar(q,T) is always positive and for large ¢ — qo, it approaches
zero from above. Full line is Ar(q,T) for € = 0. Below T,
Ar(q,T) is negative, indicating the instability of the FDT
solutions.

below.

In Fig. 2 we show curves for g = 0.5 =~ (5/4)(1/v2m).
Now, decreasing the temperature, Az (g, T) begins to be
negative at some finite ¢ which is discontinuously shifted
from qo and it stays finite in the limit L — oo.

04
02
<
0.0
\ 'I"
.02 AN BTSN S U T S B S
0.00 0.05 0.10 0.15 0.20

q

FIG. 2. Typical behavior of Ar(q,t) as a function of q for
T =T.(1+¢€) and g > gt-- The minimum of Ar(q,T) is the
place where it first becomes negative for decreasing T' below
T..

The critical values ¢. and 7. for which the minimum
of Ar(q,T) first becomes negative are obviously defined
by the equations

A(ge, Te) = 0,
A'(ge,T.) = 0.

(3.12)
(3.13)

Forg > 1/ V27, the above system of equations has two
solutions: the trivial solution ¢. = go which diverges in
the limit L — oo, and g, < go which in the L — oo limit
approaches the value

T 7T,
o= —1In{—=_), 3.14
4 4 n (71’TC — 1) ( )
where T, and g are related by the equation
wTc+1
1 e) €
2 (rTe) (3.15)

T 27 (nT, — 1)

For g < 1/+/27, Egs. (3.12) and (3.13) have only a single
solution: ¢g. = qo-.

The plots of Ap(g,T) presented in Fig. 1 and Fig. 2 are
characteristic plots for any g < 1/\/5; and g > 1/\/2—7r,
respectively. The fundamental difference between these
two situations is that in the former case the minimum of
A moves continuously toward qo as T — T., while in
the latter case it saturates at some value of ¢ which is
at T = T, given by Eq. (3.14). We will see shortly that
for g <1/ V27 the system has a second-order transition
while for g > l/m it becomes a first-order one. Hence
the value

1
Gtr = m

is termed the tricritical value of g. Figure 3 shows the

(3.16)

1.2 T —T T
L 2 ¢ order 1" order
08 | 7]
Q
=
0.4 1
statics
[ :
0.0 . Y i

0.0 0.4 0.8 1.2

g

FIG. 3. Phase diagram of the RSGM. Vertical dotted line
g = gir separates regimes of the first- and second-order tran-
sition. The full line is the dynamic result given by formula
(3.15). For comparison, the static result of Korshunov in
Ref. 7] is plotted by a broken line.
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phase diagram, i.e., the dependence of T, on g. In the
regime of second-order transition (g < g¢.), the critical
temperature is always T, = 1/m while in the case of a
first-order transition (g > g¢.) T. increases as g increases
according to Eq. (3.15).

The predicted phase diagram is in agreement with one
calculated in Ref. [7] on the basis of the Gaussian varia-
tional method with a one-step symmetry breaking mech-
anism. Both calculations result in the same tricritical
value gy, and T, — g dependence for g < g¢,. For larger
g, the static T, becomes slightly lower than the dynamic
one. This difference increases with the increase of g. The
difference between the two T, is due to the fact that the
FDT broken solution has a higher equilibrium free energy
than the FDT one.

To gain a better understanding of the system dynam-
ics we can, at least approximately, try to numerically
integrate Eq. (2.23) assuming that the FDT holds every-
where. We start from the form of the free propagator of
the action (2.17) which is expected to be a good solution
in high-temperature phase (where the cosine term is ir-
relevant). This is the same approximation which leads
(2.23) to (3.4). It yields

- 1
q(k,t) = BT a®

The effect of the lattice and the disorder is partially
included through the mass term p(t) which does not ex-
ist in a free theory. Equation (3.17) can be analytically
integrated over k space, and an integration yields a self-

consistent equation for the correlation function g¢(t) [or
mass u(t), Eq. (3.6)]:

(1 - e—V”"ﬂ(‘)lt) . (3.17)

_ T (w8
W= {l (s is)

—E1{{(n/L)* + u(t)/B)t}

+E{[7® + p(t) /,B]ﬂt}}, (3.18)
where E;(z) is the exponential integral
oo , e—z'
Ei(z) = i dz o (3.19)

The numerical solutions of Eq. (3.18) for temperatures
close to T, are shown in Fig. 4 (for g = 0.3 < g¢,) and in
Fig. 5 (for g = 0.5 > g4,). For T > T, and long times ¢,
q(t) has logarithmic behavior ¢(t) ~ In(t) up to some ¢t
where the evolution of ¢(t) is affected by the system size,
q — qo ~ In(L).

As we already noticed, the behavior of ¢ below T, is
quite different for g < g¢; and g > g¢,. In the figures we
see that for g < g, ¢ as a function of time continuously
approaches its asymptotic value as T — T.. For g > gi.,
on the other hand, there is a finite jump between g. and
go. In this sense the transition is of the second order
(continuous) or of the first order (discontinuous).
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FIG. 4. Typical behavior of the solutions of Eq. (3.18) for
g < gir and T = Tc(1 + €), where T, = 1/w. For T > T., the
large-t saturation of the curves ¢(t) is a consequence of finite
size effects while for T' < T it is also affected by nonergodicity.
The full line is g(t) at T..

IV. THE DYNAMICS IN THE GLASSY PHASE

As we have seen in the preceding section, the FDT dy-
namics has to be violated at low temperatures T' < T,.
In the present section we analyze the dynamics in this
phase. The general approach we take is following that of

0.20 oy
g=0.5
3
016 F L=10
0.12 |
~
R
N’
o
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[ L AR T
0.04 4
/ -- E=TI0
0.00 B— ' :
10 10> 10" ¢ 10° 10 10°

FIG. 5. Plot of the solutions of Eq. (3.18) for T' = T.(1+¢).
For g = 0.5 critical values are T. = 0.3521 and ¢. = 0.0656.
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Sompolinsky and Zippelius [19]. We assume the size of
the system to be large and finite and the limit ¢t — oo
is taken before the thermodynamic one. Hence the free-
energy barriers are also large but finite and the time scale
t* for the system to go over the barrier separates between
two dynamic regimes: For ¢ < t* the relaxation occurs
within each phase-space component (“valley”) separately
and the dynamics is ergodic. For ¢ > t* the system goes
over the barriers from one component to another. In this
regime the dynamics violates the FDT. The assumption
is that t* — oo in the thermodynamic limit but in such
a way that larger time scales ¢ > ¢* are still defined such
that t/t* — oo as well in this limit. Although the depen-
dence of t* on L is not known, the value of q(t*) = ¢*
can be found and since ¢(t) is monotonically increasing
the dynamics can be analyzed in terms of ¢ < ¢* (er-
godic) and ¢ > ¢* (nonergodic regime). This will be
achieved through the QFDT hypothesis. It is also im-
portant to note from the outset that the dynamics in the
nonergodic regime feeds back on the short-time dynamics
because the FDT violation leads to the generation of an
anomalous “mass” term which is present at all times.

Indeed, once the FDT is broken, A(t) # —0w/8t and
therefore [,7° A(t)dt is larger than w(oo) — w(¢*) and it
will be assumed that p* = limy o0 [,2° A(t)dt > 0 due
to the contribution from the non-FDT regime. Looking
back at the instability found in Eq. (3.8) it can be seen
that the presence of u* > 0 may prevent the instability
since a finite p* will change A(q) to A(q) = A(q) + p*.
So the stability analysis has to be performed on A(q) If
we denote its minimum by gmin, the stability condition
will be A(gmin) > 0. The QFDT hypothesis states that
A(qmin) = 0, which means that u* = —A(gmin) is the
minimal necessary to marginally stabilize the behavior.
This condition also leads very naturally to the identifi-
cation of ¢* with gmin and therefore g* is the solution of
the equation

A'(g*) = 0. (4.1)

We now discuss the dynamics in each regime sepa-

rately.

A. Ergodic dynamics t < t*

The numerical solutions of Eq. (4.1) for temperatures
T < T, and for different values of constant g are shown
in Fig. 6. In the regime of continuous transitions, as T
approaches T, = 1/7 from below, ¢* diverges as

., T 1 1

= 41 —nT In (27792) ’ (4.2)

For discontinuous transitions, the dependence of T, on
g is given by Eq. (3.15). As T — T., q* approaches gq.
given by Eq. (3.14). The final points T = T of the curves
for given g > g, shown in Fig. 6 indeed end up on the
curve given by Eq. (3.14).

Since on finite time scales ¢t < t* the FDT solutions are
still stable, the evolution of g(t) toward g* is described

0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 6. Plot of ¢" versus T for T' < T.. At T = T. the
curves diverge for g = 0.1, 0.2, 0.3 < g, while for g = 0.4,
0.5, 0.6, 0.7, 0.8 > gi, they have finite values.

by Eq. (2.23). Expanding Eq. (2.23) around ¢* we can
investigate how ¢(t) approaches its stationary value g*:

—

q(k,t) = q* (k) + dq(k,1). (4.3)

An expansion (4.3) is inserted into the equation of mo-
tion (for details see the appendix of Ref. [18]), which after
lengthy manipulations yields

{1 —nT (1 - e_4”q'/T) } 5q%(t)

+/tdt’[6q(t —1') — 8q(t)]0udq(t’) = 0. (4.4)

The asymptotic solution of the above equation is assumed
to have an algebraic form
dq(t) ~t7%. (4.5)

The exponent v is a solution of the equation obtained by
inserting (4.5) into Eq. (4.4):

r2(1 —v)

I'(1-2v) (4.6)

=T (1 — 6“4""'1*/71) ,
where I' denotes the gamma function. The right-hand
side will turn out to be equal to the FDT breaking pa-
rameter m(T') (see below).

The plot of the temperature-dependent exponent v for
some values of g is given in Fig. 7. In the weak-coupling
regime (where the transition is continuous) the right-
hand side of Eq. (4.6) is very close to 7T = T /T, because
the second term in parentheses is exponentially small and
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FIG. 7. The temperature dependence of the critical expo-
nent v for different coupling constants g.

hence v becomes g independent.

The crossover time characterizing how ¢(t) approaches
g* diverges as € = 0" (or T — T ) and most of the time
t < t* is spent by the system in the “critical” regime
with anomalously slow dynamics. Actually the dynamics
becomes even slower since it changes from a power to a
logarithmic law. To see that we note that the right-hand
side of Eq. (4.6) approaches 1 as ¢ — 0%. In the weak-
coupling regime it is 1 —¢€ [the results will also hold at the
first-order regime with a more cumbersome dependence
of the right-hand side on (T. — T')].

Looking at the equation I'?(1 —v)/T'(1 —2v) =1 —¢
we find

V6

= ~—¢l/2, 4.7
v - € (4.7)

Hence
Sqt) ~t= 7" (4.8)

and if € — 0 such that |¢}/2Int| < 1 this behavior implies

3q(t) ~ c'Int (4.9)
with an e-dependent coefficient c'.

It is interesting to note that the logarithmic behavior
can also be obtained as T — T.F. For simplicity, we
analyze the g > g, case (note that for g < g¢; L must be
kept finite but for g > gy, this limitation is not necessary).
Assuming dq and §A = A(g) — A(g*) to be small, a
solution of the form (4.3) where 8q ~ |8A|Y2f(t/t.) is
looked for. Similarly as in the derivation of Eq. (4.4), the
expansion of (2.23) yields an equation for f(u), u = t/t.:

/Ou Q' [flu—u)— F))f' () = -1,  (4.10)
of which the solution is
flu) = ?ln(u). (4.11)

The time scale t. has to be determined by matching
the solution (4.12) with the solution at short time scale,
t ~ 1, which gives the estimate

tc ~ el/[e|1/2 .

(4.12)

B. Nonergodic dynamics t > t*

In this regime FDT is violated and the relation between
r(t) and ¢(¢) changes. The simplest change that can be
implemented is to assume

r(Ryt) = m 2 q(F 1),

t >t
Oy

(4.13)

One can take this relation as an alternative definition of
QFDT. This will imply 7(t) = m&q(t), and

M) = —mZw(e),

t t*.
2, >

(4.14)

Since the generation of the mass p* [see Eq. (2.14))
requires |A(t)] < |Ow/8t| the QFDT solution is possi-
ble only if m < 1. The parameter m is a free parameter
which has to be determined self-consistently from the dy-
namics for times below and above t*. In general, it can
depend on the temperature or other properties of the
studied system (for example, g). For m — 1, the QFDT
reduces to the ordinary FDT.

For the purpose of future discussion, it is convenient
to cast the equations of motion (2.21) and (2.23) in such
a form that contributions from the ¢ < t* and t > t*
regimes can be easily identified. After some algebra,
Eq. (2.21) for the response function reads

t* o
{at +8k% + pt + / dt’A(t’)} r(k,t)
0

—/t dt' Mt — t")r(k,t') = A(t)g* (k). (4.15)

Using the QFDT (4.13), the integrals I(E, t) and I(E,O)
in Eq. (2.23) become

-

I(I;, 0) = (1 — m)w*q* (k) + mwoqo, (4.16)
I(k,t) = (1 — m)w(t)g* (k) + mwogo(k)
“A(%) /t dt'q(F, t'), (4.17)

and the equation for the correlation function reads
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t* t
{at + Bk + p* + / dt’A(t')}q(E, t) — / dt'\(t — t')q(k,t')
0 t*

= 1= (1= m)[w(t) — w*]g" () + z,\(t)/0 dt'q(k,t'), (4.18)

where go is the asymptotic value g(t — oo). Note that
for T < T, it is different from the one mentioned before
in the T > T, case. Equations (4.15) and (4.18) are
equivalent to one another, as they have to be because of
the QFDT relation between them.

To proceed further, we rescale the variable t —» u =
t/to where to > t* is the time needed to reach the equi-
librium distribution and it diverges as L — oo, and look
for the solutions for the response and correlation func-
tions which have the scaling forms

q(k,t) = §(k, t/to), (4.19)
r(k,t) = tlf(l?, t/to), (4.20)
which imply that
w(t) = @(t/to), (4.21)
A(t) = %:\(t/to). (4.22)

Starting from Egs. (4.15) and (4.18), a straightforward
calculation gives the equations for G(k, t/to) and 7(k, t/to)
for times t > t*:

(,Bkz + ;L*) F(E, u) — /‘0" du’ :\(u - u')F(E, u')

= A(t)g" (k) (4.23)

and
(o2 + )it - [ " A - w)i(F, )

=1-(1-m) [d)(u) - w*]q*(lE). (4.24)

Again, Egs. (4.23) and (4.24) are equivalent because of
the QFDT.

We do not intend to look for the solutions of Egs.
(4.23) and (4.24) for arbitrary u. We are primarily in-
terested in their asymptotic behavior for u — 1 (or
t — to — o00). Because of the self-consistency, how-
ever, the solutions of the above equations in the limit
u — 0 have to be matched with the solutions on finite
time scales, when ¢ — t* from below. The matching
condition will give an equation for p* (or ¢*).

For v — 0, the contribution from the integral in
Eq. (4.23) vanishes and the equation yields

(Bk? + p*) 7(k,0) = X(0)g" (k). (4.25)

If we now substitute the expression ¢*(k) = 1/(Bk? +
u*), and assume the existence of a nontrivial solution,

F(E, 0) # 0, Eq. (4.25) gives the condition on p* which is
actually the defining equation for p*:

dk 1

1=4nw* .
(27(‘)2 (ﬂk2 + u*)z

(4.26)

This is exactly the condition A’(¢*) = 0 which was
heuristically argued before, Eq. (4.1). To show it, we
have to integrate out Eq. (4.24) (keeping L finite) and
use the definition of A(g,T), i.e., Eq. (3.7). In the replica
language it is the condition on p* for the eigenvalue of
the replicon mode to change from a negative value to zero
[see Eq. (5) in Ref. [8]].

The matching condition for the solutions on two time
scales also fixes the parameter m. Equation (2.20) and
QFDT (4.14) give

= / ) = mw*, (4.27)
e

or m = p*/w*. Using the condition A’(¢*,T) = 0, we

obtain

m(T) =T (1 —e™*/T), (4.28)
which appeared on the right-hand side of Eq. (4.6).

The dependence of m on the coupling constant is hid-
den in ¢*. For g < g¢x and at T = T, = 1/, the ex-
ponential term in (4.28) has nonanalytic behavior. The
asymptotic form of m as T — T is given by

m(T) = =T [1 - (21rg2)T‘/(T°_T’] . (4.29)

In order to find the asymptotic behavior of g(t) in the
t — to — oo limit, it is convenient to cast Eq. (4.24) in
the form

{ﬂkz + u(t) + /Ot dt',\(t')}q(zz, t) — q(k, t) /ot dt' \(t')
=1-(1-m) [w(t) - u*]q*(ié), (4.30)

where we have used the fact that 5 > t*. The to — oo
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limit yields

(BE? + o) qo(k) = 1 — (1 — m)(wo — w*)g* (k). (4.31)

Equation (4.31) will be used in the next section in the
derivation of the static expression for the height-height
correlation functions.

V. STATICS: HEIGHT-HEIGHT CORRELATIONS

The scaling properties of the rough surface are man-
ifested in the behavior of the height-height correlation
function which is defined by

CE—-7t—t)= <[h(55, t) — h(&, t')]2>,

where, as in Egs. (2.8) and (2.9), the brackets () denote
average over stochastic dynamics and over the quenched
disorder. In terms of the previously introduced correla-
tion function G(& — &',t —t'), C(Z — &',t — t') reads

(5.1)

C(@-a&' t—t)=2[G(0,0) - G(Z -7, t—t)]. (5.2)
Of particular interest is the behavior of C(Z — &’,t — t')
in the static limit, i.e., for ¢ = t’, which is the most
commonly measured quantity in either experimental or
numerical studies. In this limit, expression (5.1) reduces
to
=2\ _ —ik- (#-z')
C(@—%) =2 (2 )2 {1 e iR (- }G(k 0). (5.3)

The equation for G(E, 0) can be derived from the ef-
fective action (2.17) by standard techniques [18] similar

to that for Eq. (2.23) for g(k,t). Actually, what we need
in Eq. (5.3) is only G(k,t) at t = 0 which is given by the
initial condition

1
Bk?

To calculate the integral I (l;;, 0), we need to know the
dynamics on all time scales. Since the dynamics are fun-
damentally different above and below T, we treat these
two cases separately.

(a) T > T.: In this regime the FDT holds for all times.
Straightforward algebra yields

G(F,0) = = [1+I(F, 0)]. (5.4)

I(k,0) = ﬂ/fz

In the thermodynamic limit, (5.5) vanishes because wo —
0 if L — oco. With Egs. (5.4) and (5.5), the C(Z — &)
may be written as

(5.5)

2 dk 1 —coslk - (& —5:")]
)= ﬂ/ (27)2 k2

For large |£ — &’|/a the dominant contribution in the
integral comes from the region k|Z—&'| > 1, which yields
the asymptotic behavior

(5.6)

Cc(z &> a. (5.7)

—:i‘):zln<lz ‘”)) E
T

The logarithmic behavior of C(Z — &) for large |% — #'|
with a prefactor proportional to temperature is the well-
known property of the high-temperature phase.

(b) T < T,: This is the regime of nonergodic dynamics.
The QFDT has to be applied here. In this case, the
integral I(k,0) is given by Eq. (4.16), and the expression
for G(k, 0) reads

. 1 * ok
G(£,0) = 5 {1 (1 - mw* + mwoqo]. (5.8)
Using
-
Mo — u* = / dt’ A(t') = m(wo — w*), (5.9)
to
and Eq. (4.31), we can derive a useful relation:
1 1 1
= =" 1-—)q", 5.10
90 m,8k2+u0+( m)‘] ( )

with the help of which G(E, 0) can be written in the form

L1, @ N\, (_L1)y__1
Bz \m " Bk? + po m ) Bk? + p*’

(5.11)

G(k,0) =

Again, in the thermodynamic limit wo vanishes. The
asymptotic form of the height-height correlation function
can be obtained by inserting Eq. (5.11) into (5.3) and
following the same procedure explained for T > T,. This
will give us

I In|Z/al if 22p*/(Br) < 1
(@) =
—L_In|%/al if z22p*/(BK) > 1.
(5.12)
Using Eq. (4.28) we can write this as
C@) = L In|Z/al ifr<x g
7Y (1 - et /T) M in|@/al if 2> €7,
(5.13)
where the correlation length £* reads
& =+/k/Tp*. (5.14)

Near T., £* ~ exp(A/e), where A is a constant. In
Egs. (5.12)—(5.14), the constants x and a have been re-
stored.

A value for £ is also obtained from the GV calcula-
tions. The static value is larger than the dynamic one
for the same temperature [7,8] (in the continuous tran-
sition regime where they yield the same 7T,.). The differ-
ence arises from the fact that the two equations which
determine ¢* and m (the so-called ”marginality condi-
tion”) are replaced by two equations for the values of
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T
FIG. 8. The slope of the In(z/a) term in Eq. (5.13) versus
temperature for different coupling constants g, with a = 1

and k = 1.

the two variational parameters within the one-step RSB.
These yield a smaller "mass” and hence a larger correla-
tion length.

For g > gi:, as T, is approached from below, the slope
S(T) of the logarithm of the asymptotic behavior is given

by

S(T) iz {1 + (27Tg2/f€2)1/€} , (5.15)

™
which is consistent with (but again, for the same rea-
sons, different from) the general behavior found in GV
calculations of Ref. [7].

Figure 8 shows the slope S(T') for different values of g.
For g < gir and near T, the behavior is also consistent
with Ref. [8] and with the numerical results we obtained
simulating the random-substrate model [14]. For g > gi,,
the transition temperature is larger than 1/7, and below
T. the slope has stronger dependence on g. In both cases,

decreasing the temperature below T, the slope increases
(see Fig. 8).

VI. CONCLUSIONS

In this paper we have studied the relaxational dynam-
ics and equilibrium properties of the two-dimensional
(2D) random-phase sine-Gordon model in the framework
of the Martin-Siggia-Rose formalism. The analysis is
based on the nonperturbative, self-consistent Hartree-
type approximation of the nonlinear sine-Gordon term
with the terms quadratic in the fields. The major results
are related to the behavior of the autocorrelation func-
tion g(t), response of the system r(t), and the equilibrium
height-height correlation function C(Z).

Analyzing the dynamic stability of the model we found
that the fluctuation-dissipation theorem is violated be-
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low some critical temperature T, for times larger than
some characteristic time scale t* which diverges with sys-
tem size. Below T, we separately studied dynamics for
short times ¢t <« t* (where the FDT holds) and for large
times ¢ > t* where the dynamics becomes nonergodic,
or the FDT solution becomes unstable. To stabilize the
dynamics on all time scales, we followed an approach
introduced by Horner [16] which is based on the gener-
alization of the FDT to the so-called quasi-FDT, which
assumes mOq(t) = r(t), where a free parameter m is
generally different on different time scales, and must be
self-consistently determined by matching the proposed
solutions for different times. For RSGM there is only one
single time scale t*. Using the QFDT we constructed the
self-consistent, marginally stable (i.e., the system is al-
ways critical below T,) solutions in the low-temperature
phase.

The character of the transition between the ergodic
(T > T.) and the nonergodic (T < T.) phase depends on
the strength of the coupling constant g and it is reflected
in the behavior of the q(t). For g < gi, as T — T, q(t)
approaches its stationary value go continuously (in this
sense the transition is second order) while for g > gy,
q(t) jumps discontinuously (a first-order transition) from
go to g. < go- The value g (= 1/\/2_71'), therefore, has
a meaning of a tricritical point. In the regime of the
second-order phase transition, the critical temperature is
always T, = k/m, independent of g, while in the regime of
the first-order phase transition it increases as g increases.
In the latter case, the critical temperature is larger than
the static one. Such a behavior was also found in other
systems with a first-order transition [17,18] and it signals
the existence of many metastable states [26].

Above T, we rederived the well-known asymptotic re-
sults: logarithmic behavior of the autocorrelation func-
tion, ¢(t) ~ T In(t), and the stationary height-height cor-
relation function, C(Z) ~ T In(z/a).

Below T, the self-consistent dynamics yields the fol-
lowing results. In equilibrium it essentially reproduces
the results of the Gaussian variational [7,8] approach
with the one-step replica-symmetry breaking. In the
dynamics this is reflected by the breaking of the FDT
for times above a single characteristic time t*. Phase
space is broken into separate components and the diver-
gence of their barriers leads to the divergence of t* in the
thermodynamic limit. Within each component the auto-
correlation g(t) saturates to a finite value ¢* algebraically:
q(t) = ¢* —ct™ as t — t*, where v is a temperature-
dependent exponent. g* diverges and v — 0 as T' — T..

The static height-height correlation function for large
|Z| behaves as C(&) ~ S(T)In(z/a). If x K £*, the coef-
ficient of the logarithmic term has the same temperature
dependence as in the high-temperature phase: S(T') ~ T.
For z > &*, S(T') has nontrivial 7' and g dependence. If
g < g¢r and T close to T, from below, S(T) ~ 1/72.

The results are obtained based on the self-consistent
QFDT. The analysis applies if ¢ — oo before L — oo,
where L is the system size. If the order of limits is re-
versed the system never reaches equilibrium below T..
This will entail a nonstationary behavior with aging phe-
nomena [27].
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We summarize the analytic investigations of the RSGM
dynamics. We observe the same “fault line” as mentioned
in the Introduction concerning the equilibrium behavior.
On one hand there are highly nontrivial dynamic RG
results which indicate a glassy ergodic behavior below
T.. The dynamic is “critical” with a power-law relation
between time and length scales 7(L) ~ L*T) and a non-
linear response v ~ F*T)/2 with a dynamic exponent
z(T') > 2 which increases as T is lowered below T..

On the other hand, however, we have presented above a
nonperturbative self-consistent approach which predicts
the breaking of FDT and ergodicity below T, (this ap-
proach is exact in the large-N limit [18]). The outlook for
bridging between the two approaches is not very bright.
A dynamic RG in which FDT is broken “by hand” is
certainly possible and the results will undoubtedly follow
their equilibrium counterparts [12]. A 1/N expansion is
also possible but experience from other models makes it
unlikely that the 1/N correction will change our results
(and will certainly have a limited extrapolation to the
N =1 behavior).
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Numerical simulations are probably the best hope but
they are likely to clarify first the equilibrium situation. It
should be emphasized, however, that the dynamic simu-
lations with a small driving force F' are in a much better
agreement with the dynamic RG. Since the regime of
smaller F' is accessible (although it requires larger lat-
tices and more disorder realizations), it may provide an
alternative avenue to probe the potential FDT breaking
as F' — 0. In that context an extension of the above
calculations to the presence of F' # 0 in order to derive
the v = v(F') relation will be very useful [28].
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